Beam Dynamics in IOTA using PyORBIT FERMILAB-POSTER-21-059-STUDENT

David Feigelson, University of Chicago – SIST Program I Tanaji Sen and Jean-Francois Ostiguy I Accelerator Division

Integrable Optics Test Accelerator (IOTA)

- Storage ring for advanced beam physics
- Stores proton and electron beams
- Currently running experiments with electrons
- Small and can be easily reconfigured to accommodate a wide-ranging experimental program

IOTA Schematic

Space Charge Force

- Self generated electro-magnetic force
- Net repulsive
- While negligible in beams where particles move at highly relativistic velocities. not the case for the proton beam in IOTA

- The transverse force for a uniformly charged cylindrical beam distribution is shown above
- Perveance is the magnitude of the space charge force in the beam. It is proportional to Q / $\beta^*\gamma^2$
- Beam distribution impacts the space charge effect
- A mismatch between the incoming beam and lattice matched beam results in increased field energy which converts to emittance growth

IOTA Proton Beam Parameters

Parameter	Value
Beam Kinetic Energy, E	2.5 MeV
Beam Intensity, N	9 x 10 ¹⁰
Normalized Emittance, ε	0.3 <i>µ</i> m
Tune Shift (coasting, bunched)	-0.5, -1.2
Space Charge Perveance (coasting, bunched)	1.3 x 10 ⁻⁶ , 6.06 x 10 ⁻⁶

Emittance growth significantly reduced for the coasting beam as the perveance is about 5 times smaller

Integrable Optics

- Space charge defocusses the beam, causing tune spread to grow and particles to hit resonances and get lost
- Integrable optics might remedy this by suppressing single particle resonances with a nonlinear focusing force
- Full integrability can be achieved with specially profiled nonlinear magnets and partial integrability can be achieved with a sequence of conventional octupole magnets
- Integrability is a property of single particle motion, and space charge introduces a perturbation that has the potential to destroy the favorable features of integrability

Purpose of Project

- The goal of the project is to test if these optics can mitigate space charge driven resonances and retain the benefits of integrability while keeping loss at an acceptable level
- Simulations are performed with PyORBIT, a PIC code for multi-particle tracking that models space charge effects

Methods

- Particles are tracked for 1000 turns about the IOTA lattice
- Simulations have examined a bunched beam with octupoles at various strengths for reduced and full beam intensities

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Results

Even at a low intensity, the space charge force moves particles past the small dynamic aperture caused by full strength octupoles

An attempt to account for this was made at a greater intensity by truncating the initial particle distribution:

SC. Intensity = $9x10^{10}$, Octupoles Full Streng

 At full intensity, space charge results in >80% at full strength, even with a truncated Gaussian distribution

Conclusions

- Due to DA reductions, partial integrability does not seem to withstand a large space charge perturbation well
- Integrability is sensitive to certain lattice specific properties, such as the phase advance outside of the nonlinear insert, which will be investigated
- Further work includes testing a uniform (as opposed to Gaussian) distribution and rematching the beam to a phase advance of 2π with space charge

